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1  | INTRODUC TION

Spatial structuring is ubiquitous, and can influence all conceivable in-
trinsic and extrinsic factors in disease ecology. As such, not account-
ing for space can weaken analyses (Pawley & McArdle, 2018; Pullan 
et al., 2012; Tobler, 1970). Although spatial effects can potentially 
touch any process, social interactions may be particularly vulnerable 
(Adams et al., 2012). Consequently, the relationship between ecology- 
driven spatial structure and fine-scale social interactions has shaped 
the study of animal societies for decades. The recognition that so-
cial systems are structured by the surrounding environment rather 
than comprising random arrangements of independent individuals 
(Crook, 1964; Crook & Gartlan, 1966) was followed by foundational 
theory stating that ecological factors influence the spatial distribu-
tion of individuals within populations, which in turn determines which 

individuals interact (Clutton-Brock, 1974; Crook, 1970). Recently, the 
relationship between spatial structuring and sociality has been ad-
dressed in the context of animal social networks (Krause et al., 2015; 
Webber & Vander Wal, 2019); although relatively well-understood in 
the context of animal behaviour itself, the role of the environment and 
spatial behaviour requires addressing more frequently in studies that 
investigate social correlates of disease.

Spatial behaviour can influence social network analyses of wild-
life disease through a few principal mechanisms, which we dis-
cuss in Section 4. Fundamentally, it is important to remember that 
the social environment exists within space, so whom an individual 
spatially overlaps with defines who they can socially interact with 
(Whitehead, 2008). Consequently, the spatial and social networks 
often reinforce, or represent, one another, and their correlation may 
require controlling for (Section 4.1), or can be leveraged for operational 
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Abstract
1. Social network analysis has achieved remarkable popularity in disease ecology, and 

is sometimes carried out without investigating spatial heterogeneity. Many investi-
gations into sociality and disease may nevertheless be subject to cryptic spatial var-
iation, so ignoring spatial processes can limit inference regarding disease dynamics.

2. Disease analyses can gain breadth, power and reliability from incorporating both 
spatial and social behavioural data. However, the tools for collecting and analysing 
these data simultaneously can be complex and unintuitive, and it is often unclear 
when spatial variation must be accounted for. These difficulties contribute to the 
scarcity of simultaneous spatial-social network analyses in disease ecology thus far.

3. Here, we detail scenarios in disease ecology that benefit from spatial-social analy-
sis. We describe procedures for simultaneous collection of both spatial and so-
cial data, and we outline statistical approaches that can control for and estimate 
spatial-social covariance in disease ecology analyses.

4. We hope disease researchers will expand social network analyses to more often 
include spatial components and questions. These measures will increase the 
scope of such analyses, allowing more accurate model estimates, better inference 
of transmission modes, susceptibility effects and contact scaling patterns, and 
ultimately more effective disease interventions.
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purposes (Section 4.2). Additionally, social network traits can covary 
with many spatial processes. For example, many pathogens transmit 
through the environment, so that spatial behaviours define relevant 
‘contact events’ better than social ones, or social contact events may be 
spatially structured (Section 4.3). Likewise, host immunity and suscep-
tibility are determined by environmentally varying gradients in climate 
and resource availability, which could counteract or artificially produce 
apparent social effects (Section 4.4). Finally, a common question in dis-
ease ecology concerns the scaling of contact events with population 
density, known as ‘density dependence’; in Section 4.5, we pose this 
question as a spatial-social question, and outline how spatial-social 
methods could be used to address the problem in future analyses.

Ultimately, we summarise how spatial and social behaviour can in-
fluence infection (Figure 1), and how to analyse them simultaneously 
within the same framework (Figure 2). We start by defining both be-
haviours (Section 2) and discussing why their unified analysis is rela-
tively rare in disease ecology (Section 3), and then outlining reasons 
to analyse both where possible (Section 4, described above). To help 
researchers with tackling spatial-social questions, we then outline 
methods by which space and sociality can be delineated at the data 

collection level (Section 5; Box 1), particularly focussing on methods 
that involve approximating social behaviour with parameterisations of 
spatial behaviours. We then give case studies for considering spatial- 
social systems (Box 2), and approaches for simultaneous spatial- 
social analysis (Section 6). Specifically, we discuss the distinction be-
tween controlling for space or sociality, and alternative spatial analy-
sis methods that explicitly quantify both spatial and social processes. 
Finally, we outline important emerging frontiers and model systems in 
which the ongoing study of spatial and social behaviour is increasingly 
important and revealing (Section 7). In doing so, we provide a guide to 

F I G U R E  1   Principal causal pathways among the environment, 
spatial behaviour, sociality and disease. 1 (blue paths): 
Environmental variation in climatic factors affects the transmission 
efficiency of indirectly transmitted parasites. 2 (pink paths): The 
environment drives spatial variation in specific social behaviours 
such as fighting and mating, driving spatial variation in the diseases 
that are spread by these types of social interactions. 3 (purple 
paths): Landscape structure and resource distribution determine 
movement patterns, which themselves determine the social 
network. Movement patterns determine exposure to indirectly 
transmitted parasites. The social network determines exposure to 
directly transmitted parasites, as well as determining susceptibility 
through changes in resource acquisition and stress. Spatial 
behaviour and social behaviour can interact. 4 (red paths): The 
distribution of resources in the environment affects allocation to 
immunity, creating spatial variation in susceptibility to parasites

F I G U R E  2   Proposed workflow for collecting, encoding and 
analysing spatial data alongside social network data. Section 1: Data 
collection. Purple, blue and red arrows represent study design options 
A, B and C respectively; see ‘Collecting spatial behaviour with social 
data’. Section 2: Encoding methods. Ways to encode spatial behaviour, 
as either a node level or dyadic trait. These include: Centroids (point 
locations) taken from N > 1 observations of individuals. Individual 
territories have been assigned using Voronoi tessellation (black lines). 
Point locations can also be used to create home ranges or distance 
matrices, or fitted as an autocorrelation function in a statistical 
model examining node-level traits. Home ranges (grey circles) can be 
calculated from multiple sightings or derived from movement patterns 
or kernels, and then coded as a square similarity matrix of range 
overlaps, to be used in edge-level analyses or as variance components 
in node-level animal models. Pairwise distances (lines) can be taken 
between point locations and coded as a square similarity matrix, to 
be used similar to home range overlap. Line thickness and opacity 
are inversely proportional to distance. Section 3: Analysis methods. 
Statistical approaches to analyse spatial-social disease processes and 
some example questions that each can answer. GLMs, Generalised 
Linear Models; GAMs, Generalised Additive Models; Animal Models, 
models with a dyadic variance component included; ERGMs, 
Exponential Randomised Graph Models; MRQAP, Multiple Regression 
Quadratic Assignment Procedure; GDMs, Generalised Dissimilarity 
Models; MM random effects, Multi-Membership random effects
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conducting spatial-social analyses in the future, encouraging new and 
exciting investigations in the field of network disease ecology.

2  | HOW TO DEFINE SPATIAL AND SOCIAL 
BEHAVIOUR

We define ‘spatial behaviour’ (or ‘space’) as any representation of an indi-
vidual's context within its surrounding environment (Pullan et al., 2012). 
This may comprise point locations in space (e.g. Albery et al., 2019), 
movement trajectories (e.g. Mourier et al., 2019), space use distributions 
(e.g. Stopher et al., 2012) or a description of surrounding environmental 
variables (e.g. Saito & Sonoda, 2017). Note that in the latter case, envi-
ronmental variables are counted as a spatial measure, but by definition 

they must be taken relative to an organism's spatial context. For exam-
ple, if a researcher may be interested in the role of environmental tem-
perature in driving between-individual variation in parasitism, they must 
first decide whether to use temperature readings from near each ani-
mal's point locations, or averaged across each individual's home range. 
Meanwhile, we define ‘social behaviour’ broadly as any social associa-
tion between individuals (Croft et al., 2008). Dyadic social connections 
can be inferred from all nature of social associations, ranging from direct 
interactions involving physical contacts (e.g. grooming, mating, fighting), 
to implied associations such as co-occurrence in fission–fusion social 
groupings (e.g. pods of marine mammals, foraging flocks of birds) known 
as the gambit-of-the-group approach (Franks et al., 2010). Crucially, 
just as incorporating multiple social behaviours and network metrics 
can help with hypothesis testing (Sosa et al., 2020), simultaneously 

BOX 1 Methods for collecting spatial and social data simultaneously

Spatial data can take Lagrangian or Euclidean forms, each representing a different way of perceiving movement across the landscape 
(Nathan et al., 2008; Smouse et al., 2010). Lagrangian data collection (GPS, censusing and motion tracking) involves the researcher con-
ceptually moving through space, following individuals and summarising their movements. Euclidean data collection (trapping regimes and 
proximity loggers) uses static sampling locations which collect data on animals moving around them. Lagrangian data are richer and offer 
greater opportunities for parameterisation; however, Euclidean data collection locations are generally placed by the researcher, so they can 
be economically distributed in space to cover large areas with minimal effort and/or to accompany visits to locations of biological relevance 
or experimental manipulation sites (e.g. Firth & Sheldon, 2015). The optimal choice of methods will depend on operational constraints im-
posed by the study system of interest, for example, with regard to the size of the animal, the area over which it ranges, and the pathogen and 
biological process of interest. Here, we outline several methods of spatial-social data collection, including a brief summary of each approach, 
how they can be used to quantify spatial behaviour and social behaviour, and provide selected illustrative examples from the literature.

GPS: animals are marked and tracked over relatively large distances using satellites.
Spatial: summarise individuals' movements across the landscape.
Social: parameterise activity patterns to identify groups or interactions.
Examples: cattle (Woodroffe et al., 2016); cheetahs (Broekhuis et al., 2019); feral dogs (Wilson-Aggarwal et al., 2019).

Motion-tracking cameras: when the study organism is in a contained space, a large proportion of the population is observed using 
motion-tracking technology.
Spatial/Social: same as GPS, above.
Examples: carpenter ants (Modlmeier et al., 2019); Lasius niger ants (Stroeymeyt et al., 2018).

Census routes: researchers follow a predetermined or random route around a study area and record individual animals' behaviour.
Spatial: record locations of individuals or groups.
Social: record group memberships or interactions between individuals.
Examples: dolphins (Frere et al., 2010; Lusseau et al., 2006); red deer (Stopher et al., 2012).

Spatial proximity loggers: loggers are placed on individuals and in specific environmental locations to identify contact events.
Spatial: use individuals' environmental contact locations to create models of spatial behaviour.
Social: use individuals' contact events to create proximity/interaction/social networks.
Examples: Mastomys rodents (Berkvens et al., 2019); great tits (Firth & Sheldon, 2016); European badgers (Woodroffe et al., 2016); 
reef sharks (Jacoby et al., 2016).

Trapping locations: animals are captured for sampling or camera traps used to identify individuals.
Spatial: record individuals' trapping locations, summarising across repeated trapping events.
Social: record individuals trapped in the same group or within a given spatiotemporal window.
Examples: vole trapping (Davis et al., 2015; Farine, 2019); hyena camera traps (Stratford et al., 2019).
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investigating multiple spatial behaviours can be extremely helpful in 
revealing the underlying mechanisms in a wild animal system (Albery, 
Morris, et al., 2020).

3  | WHY IS SPACE UNDERSTUDIED IN SOCIAL 
NETWORK ANALYSES OF DISEASE ECOLOGY?

Network disease ecology suffers from a lack of methodological 
workflows and tools for dealing with spatial-social confounding, 

contributing to our lack of understanding of the relative importance 
of spatial and social behaviours. Both are hard to investigate, and 
studies are rarely designed with both in mind, so assessing them si-
multaneously can be difficult. Many studies experience operational 
limitations in detecting spatial variation; for example, ecoimmuno-
logical sampling regimes often attempt to minimise spatial variation 
rather than investigating it directly, rarely use spatial analysis meth-
ods and generally have few spatial replicates (Becker et al., 2020), 
which may reduce their power to detect spatial variation (Becker 
et al., 2019). Fitting spatial models can require specialist knowledge 

BOX 2 Frameworks for delineating and analysing spatial and social behaviour

Given the well-understood nature of spatial-social behaviours, there are a great many studies that examine their covariance, and 
several frameworks have been developed to help untangling and analysing them. Here, we describe some case studies that provide 
such frameworks to guide researchers carrying out spatial-social analyses of disease processes.

A tripartite network scaffolding for spatiotemporal contact patterns
Manlove et al. (2018) developed a tripartite network which allows the characterisation of contact events using the following three 
classes of node: space, time and individuals. Using multiple real-world examples, they demonstrated that this network can be col-
lapsed to form spatial and social networks that are commonly employed in disease ecology. Moreover, the tripartite network was 
valid for multiple different social systems. Although general and highly flexible, the approach necessitates discretising movement 
data into spatial nodes, which risks losing information, and the derived contacts are most applicable for directly transmitted para-
sites (Manlove et al., 2018). An important expansion of the framework will be to incorporate spatiotemporal variation and lag times 
(Richardson & Gorochowski, 2015; see Considering analytical timescales section).

Connecting habitat selection and socio-spatial behaviour with eco-evolutionary consequences
Webber and Vander Wal (2018) outline a comprehensive eco-evolutionary framework for spatial-social behavioural integration. 
Specifically, they link individual-level habitat selection behaviours with spatial movements, and then outline how this spatial be-
haviour results in the development of social networks. They discuss how the resulting framework can be used to examine fitness 
consequences and ecological dynamics, using animal models, among other approaches (see Analysis section). Their incorporation 
of spatial-social behaviours into quantitative genetic models offers a useful framework for identifying individual-level fitness con-
sequences (and their genetic determinants) while accounting for environmental confounders and density dependence. Their paper 
offers an interesting scaffold for the investigation of divergent effects of density-driven susceptibility and exposure effects, and the 
implied costs and benefits of sociality for disease (Ezenwa, Ghai, et al., 2016).

Networks of networks in reef shark movement ecology
Mourier et al. (2019) used reef sharks as a case study to construct a movement ecology-based framework for spatial-social analysis. 
In this approach, individuals' movement trajectories are represented as networks, where each node of the network is a Euclidean 
sampling location, and edges are represented by the individual's movements between these locations. The adjacency matrices from 
these networks are then nested in a super-adjacency matrix for further analysis, forming a ‘network of networks’. This framework 
benefits from the fine data resolution it allows, avoiding collapsing individuals' movements into summary statistics such as point loca-
tions or space use distributions (Figure 2, Section 2). The authors used this approach to demonstrate high covariance between sharks' 
spatial and social centrality (Mourier et al., 2019). Like the tripartite model above, this framework is designed for Euclidean sampling 
locations fixed in space, and has not yet been adapted for Lagrangian data; as such, Lagrangian systems may need to (artificially) 
discretise their spatial data to take a similar approach.

Competing multiple spatial and social metrics to deconstruct density dependence in a group-living carnivore
Albery, Morris, et al. (2020) examined parasite burdens in European badgers Meles meles to investigate socio-spatial drivers. They 
fitted a series of models with either social metrics (group size and co-trapping networks) or spatial population density, revealing 
that areas with high population density unexpectedly had lower parasite burdens. Because purely social metrics meanwhile had no 
detectable effects, cooperative grooming was unlikely to be the cause of the negative density dependence. A series of subsequent 
analyses revealed that spatial avoidance of parasite transmission was most likely responsible.
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which may contribute to the widespread impression that space is 
more difficult to analyse than social connectivity; however, this 
is no truer of spatial analysis than it is of social network analysis. 
Additionally, the field of social network ecology has historically 
employed network permutations that analytically control for the 
effect of spatial behaviour to ensure that spatial confounding is 
not responsible for an observed effect (Farine, 2013). Rather than 
perceiving space simply as something ‘to control for’, it is far more 
productive to treat space as an exciting and useful component of a 
system's biology that is worthy of explicitly quantifying in its own 
right (Albery et al., 2019; Pawley & McArdle, 2018).

Limitations likewise apply to the collection of spatially explicit 
social data. Because social behaviour can be hard to observe or 
infer, some social network analyses use spatiotemporal proximity 
to approximate social interactions (Farine, 2015, 2019; Gilbertson 
et al., 2020). This method is used frequently enough that tools have 
been developed to calculate social associations directly from spatio-
temporal data (e.g. the spatsoc r package; Robitaille et al., 2019). This 
heuristic may introduce spatial-social confounding in some systems, 
and it is not necessarily true that social contacts will correlate per-
fectly (or even that well) with space, so using one to approximate 
the other may or may not be valid (Castles et al., 2014; Gilbertson 
et al., 2020; but see Farine, 2015). The definitions for these be-
haviours are especially important in disease ecology because the 
field revolves around pathogens that are spread by contact events 
arising from them. For example, if a study of directly transmitted 
pathogens assumes that spatial collocations represent social con-
tacts when in fact they do not, the study may be fundamentally un-
able to draw accurate conclusions about transmission (Section 4.3). 
It is therefore vital that spatial and social behaviours be defined cor-
rectly and delineated from each other for disease network analy-
ses to function as intended (Leu et al., 2020; Manlove et al., 2018; 
Richardson & Gorochowski, 2015; Sih et al., 2018).

Encouragingly, there has been considerable recent prog-
ress identifying the importance of separating space and sociality 
in network studies of animal behaviour (Mourier et al., 2019; Silk 
et al., 2018; Webber & Vander Wal, 2018; see Case Studies). This 
push is likewise true in disease ecology, as demonstrated by increas-
ing calls for incorporation of spatial effects in network analyses, par-
ticularly where indirectly transmitted pathogens are concerned (Sih 
et al., 2018; Silk et al., 2019; White et al., 2017). Moreover, there 
is increasing conceptual and methodological overlap among the 
fields of movement ecology, network science and disease ecology 
(Dougherty et al., 2018; Jacoby & Freeman, 2016). As such, the time 
is ripe for increased synthesis of spatial and social network method-
ology in disease ecology studies where possible.

4  | BENEFITS OF SPATIAL-SOCIAL 
NET WORK ANALYSIS

Incorporating spatial components into social network analyses can 
provide important insights into the mechanistic underpinnings of a 

disease system, as well as potentially offering operational benefits. 
Below we consider several of these advantages. Fundamentally, we 
argue that spatial-social analysis is important because it is challenging 
to predict where spatial and social behaviours interact, and poten-
tially compete, in influencing disease dynamics. Although spatial-
social correlations are common (e.g. Firth & Sheldon, 2016; Mourier 
et al., 2019; O'Brien et al., 2018), these relationships vary consider-
ably across systems, and can be context-dependent (e.g. O'Brien 
et al., 2018). Unfortunately, little consensus is available on which sys-
tems and environments are most likely to exhibit spatial-social cor-
relations due to the rarity of cross-system synthesis. Recent studies 
have integrated social networks across a range of animals to make 
strong comparative conclusions (Sah, Mann, et al., 2018), and a recent 
meta-analysis found that spatial variation in wildlife disease is wide-
spread across host–pathogen systems and could not be predicted 
based on any host, pathogen or sampling traits (Albery, Sweeny, 
et al., 2020). As such, it is difficult to predict a priori which systems 
and sampling regimes will exhibit the most spatial-social confound-
ing. This uncertainty alone is a strong reason to incorporate spatial 
analyses into social network studies of wildlife disease.

There likely exist certain systems for which spatial-social anal-
ysis is unnecessary, and social network analysis alone is sufficient. 
However, we opt not to speculate on these systems for the follow-
ing reasons: first, the lack of cross-system syntheses means there is 
currently little empirical evidence, so such recommendations would 
be mostly conjecture. Second, the numerous advantages cover so 
many factors that there are few systems that would not benefit in 
at least one way by conducting a spatial-social analysis (even if this 
space was demonstrated to be relatively unimportant). In the future, 
greater application of spatial (or spatial-social) analyses of wildlife dis-
ease, and increasing application of simulations aimed to answer these 
questions (e.g. Gilbertson et al., 2020) may help to clarify these issues 
for a wider range of studies, providing more prescriptive guidelines.

4.1 | Controlling for habitat selection and spatial-
social feedbacks

The landscape defines the distribution of resources and potential 
movement paths, which shapes the structure of the social network 
through habitat selection (Figure 1; Albery, Morris, et al., 2020; He 
et al., 2019; Webber & Vander Wal, 2018)). Reciprocally, the social 
environment forms an important component of survival, compe-
tition and dispersal in a heterogeneous environment (Armansin 
et al., 2019). As such, at fine scales, animals may make space use 
decisions based on their associates, weighed against environmental 
cues (Firth & Sheldon, 2016; Peignier et al., 2019). Given this strong 
mutual causality, it can be difficult to say whether any behaviour 
represents solely spatial or social processes.

Empirical attempts to delineate spatial and social behaviour 
are complicated when considering interactions with disease. Both 
spatial and social behaviour determine an individual's exposure 
and susceptibility to infection, and yet behaviour, being highly 



6  |    Journal of Animal Ecology ALBERY Et AL.

plastic, can also change in response to infection (Ezenwa, Archie, 
et al., 2016). For example, sickness behaviours often induce slug-
gishness and a reduction in social activity (Lopes, 2014; Lopes 
et al., 2016). It is often mechanistically unclear whether this re-
duced sociality is an active process, serving, for example, to avoid 
infecting close relatives or conspecifics, or whether energy-saving 
reductions in movement merely result in a reduction in sociality 
by extension (Jolles et al., 2020; Lopes et al., 2018). In addition, 
parasites commonly affect animals' movement decisions, for ex-
ample, through parasite avoidance behaviours, so the spatial 
distribution of diseases in the environment can determine an-
imals' distributions through a ‘landscape of disgust’ in the same 
way that predators define a ‘landscape of fear’ (Albery, Newman, 
et al., 2020; Weinstein et al., 2018). This phenomenon could pro-
duce complex covarying patterns; for example, if habitat selection 
and life-history traits covary with immunity and parasite avoid-
ance (Hutchings et al., 2006), the emergent social network could 
demonstrate artefactual clustering in susceptibility.

Nevertheless, extricating the roles of spatial and social be-
haviour in driving disease is not a futile endeavour. Behaviours can 
be classified on a continuum from ‘more spatial’ (e.g. map locations) 
to ‘more social’ (e.g. partner choice), and examining and comparing 
their influence on parasite burden will similarly reveal whether the 
drivers of parasitism are more likely to be spatial or social. Although 
some study systems may be poorly suited to spatial-social analysis 
due to observation difficulties, in most cases fitting both spatial and 
social behaviours in a model and comparing their effects will likely 
strengthen inference beyond study designs incorporating only one 
of the two (see Analysis Section).

4.2 | Simplifying measurement approaches

In some circumstances, well-understood spatial-social confounding 
may be leveraged for operational benefits—for example, streamlin-
ing data collection and disease surveillance in wild animal popula-
tions with sparse data. Collecting copious GPS data is easier than 
ever (Kays et al., 2015) and can be carried out remotely, while so-
cial phenomena can be much harder to observe directly (see Box 1). 
Where spatial data are easier to collect than social interactions, 
verifying that the two correlate may allow the use of spatial data to 
approximate social contacts; furthermore, social networks and con-
tact events are commonly approximated using parameterised move-
ment data (see below, Box 2 and Section 5). For example, a study of 
African domestic dog populations used GPS tracking and proximity 
loggers to demonstrate that individual home range size correlated 
well with network centrality, which in turn influenced individual 
propensity to spark simulated rabies epidemics (Wilson-Aggarwal 
et al., 2019). Similar logic could apply to any system in which rang-
ing behaviour covaries predictably with sociality; however, strong 
spatial-social correlations are not ubiquitous. Given this uncertainty, 
we stress that this approach should only be taken cautiously and 
when accompanied by rigorous validation procedures. In any case, 

empirical measures of sociality and spatial behaviour will often be 
imperfect proxies for the interactions that researchers hope to 
quantify (Farine, 2015). Attempting to incorporate both space and 
sociality in concert may buffer for this necessity.

4.3 | Identifying pathogen transmission mode

Unknown parasite transmission mode is a common reason for con-
ducting spatial-social analyses. Contact events can arise from a 
variety of spatial/social processes, so the relative importance of 
spatial and social behaviour depends heavily on the pathogen's 
transmission mode. Therefore, where transmission mechanisms 
are unknown, incorporating both spatial and social behaviour helps 
identify the pathogen's transmission mode, because the behaviour 
that most closely approximates contact events will best describe 
variation in infection (Craft, 2015; White et al., 2017). Intuitively, en-
vironmental variables will only weakly influence individuals' expo-
sure to directly transmitted pathogens, and transmission probability 
will most accurately be represented by social proximity. As such, 
if space is found to be unimportant relative to sociality, research-
ers can conclude that direct transmission is likely. For example, in 
sleepy lizards Tiliqua rugosa, social proximity was a better predictor 
of Salmonella transmission than was spatial proximity, indicating a 
relatively direct mechanism (Bull et al., 2012). Conversely, simulta-
neous use of proximity loggers and GPS tracking revealed that badg-
ers and cattle rarely contact each other directly (despite substantial 
range overlap), indicating that bovine tuberculosis Mycobacterium 
bovis is likely transmitted through the environment (Woodroffe 
et al., 2016). An important distinction should be made between 
pathogens that are transmitted through specific social interactions 
(e.g. sexually transmitted infections) and those that merely require 
spatiotemporal coincidence (e.g. aerosol-transmitted viruses). It is 
possible that both spatial and social behaviours will have detectable, 
non-interchangeable effects on transmission patterns for the latter 
group of pathogens, so that both behaviours are needed to gain 
a full picture of disease dynamics. Similarly, if spatial associations 
with potential or known vector habitats are predictive of infection, 
a study could conclude that vector-borne transmission is likely (e.g. 
proximity to rivers being predictive of infection with avian malaria; 
Wood et al., 2007).

Ignoring transmission mode when examining correlates of spatial/ 
social behaviour can produce a confusing picture of a system's ecol-
ogy. For example, a study in Japanese macaques Macaca fuscata 
found that centrality in the grooming network was positively cor-
related with infection with indirectly transmitted nematodes, which 
seems mechanistically unlikely (MacIntosh et al., 2012). It is possible 
that the nematodes' transmission mode is poorly understood, exhib-
iting a more direct, social component, but it is also possible that the 
grooming network was spatially structured, so that social network 
centrality reflected environmental processes rather than sociality 
itself (MacIntosh et al., 2012). Importantly, because the environment 
may determine the aspects of individual behaviour decisions, some 
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geographic areas may be hotspots for contact events (Albery, Morris, 
et al., 2020) or for certain risky behaviours, even where the patho-
gen is directly transmitted. For example, if certain areas lend them-
selves to fighting or mating grounds for Tasmanian devils Sarcophilus 
harrisii, this would create an enduring spatial variation in the preva-
lence of Tasmanian devil facial tumour disease despite strictly direct 
transmission (Figure 1; Hamede et al., 2009). According to a recent 
meta-analysis, directly transmitted pathogens may exhibit spatial 
autocorrelation at least as often as environmentally transmitted 
ones (Albery, Sweeny, et al., 2020). Therefore, known transmission 
mode is not sufficient to predict whether space is worth investigat-
ing in a given host-parasite system, and researchers will benefit from 
measuring both. Recent work has considered how the spread of in-
formation, or behaviours, may depend on the fine-scale transmission 
mode between individuals, often using multiple predictor networks; 
disease ecology studies aiming to differentiate pathogen transmis-
sion mode could benefit by building on the methodology established 
in these studies (Hasenjager et al., 2020). Indeed, recent studies have 
developed tools to do so (Hasenjager et al., 2020; Sah, Otterstatter, 
et al., 2018), and their further popularisation may contribute to de-
veloping general theory comparing and contrasting the transmission 
of information and disease (Evans et al., 2020; Romano et al., 2020).

4.4 | Investigating susceptibility effects

Social network analyses commonly focus on the role of social 
contact events in driving parasite exposure. However, it is impor-
tant to bear in mind that parasite burden is also a function of host 
susceptibility, that the spatial and social environments can impact 
host immunity directly, and that these effects may not align (Albery 
et al., 2019; Becker et al., 2018, 2019). As such, space and sociality 
should be quantified simultaneously if there is any expectation that 
they will affect both susceptibility and exposure. Resource supple-
mentation provides an ideal example: increased food should provide 
more resources for allocation to immunity, reducing susceptibil-
ity, yet supplementation commonly leads to aggregation on feed-
ing sites, increasing exposure rates as a result (Becker et al., 2015). 
Consequently, supplementation could either increase or decrease 
parasitism, or neither, depending on the balance of these processes. 
Interestingly, the social environment can also alter susceptibil-
ity through stress-induced immunosuppression, potentially coun-
teracting environmental effects on susceptibility or transmission 
(Ezenwa, Ghai, et al., 2016; Hawley et al., 2011). Examining both 
spatial and social behaviour simultaneously may help to extricate 
sociality-driven changes in susceptibility when examining environ-
mentally transmitted pathogens. One of the foremost advantages 
of measuring immunity in conjunction with parasitism lies in distin-
guishing susceptibility- and exposure-driven processes (Bradley & 
Jackson, 2008). We suggest that studying immunity alongside space, 
sociality and parasitism will similarly bolster the strength of infer-
ence in determining transmission mechanisms while accounting for 
susceptibility effects in network disease ecology.

4.5 | Quantifying density dependence

Epidemiological models often make fundamental assumptions about 
the scaling between population density, contact events and disease 
(i.e. ‘density dependence’), and the validity of these assumptions 
can profoundly alter models' ability to predict disease dynamics 
(Antonovics, 2017; Hopkins et al., 2020). This question is fundamen-
tally a spatial-social one: how do interactions increase when you add 
more individuals to the same space? For example, adding more indi-
viduals in a given space will generally result in an in-step increase in 
aerosol inhalation, producing increased contact events for airborne 
pathogens; however, such increased host density will not necessar-
ily result in a proportional increase in copulation events, so sexually 
transmitted infections (STIs) are unlikely to scale in this way. As such, 
STIs are generally considered ‘frequency-dependent’. In reality, all 
pathogens exist somewhere on a continuum between the two, and 
identifying where they lie is an important research priority (Hopkins 
et al., 2020).

Despite its relative rarity in disease ecology, spatial-social 
analysis could be incredibly revealing when it comes to empiri-
cally identifying pathogens' density dependence and the scaling 
of contact events. In the absence of disease data, spatial-social 
analyses could reveal whether increased population density re-
sults in a greater frequency of interactions or associations, and 
this information could be incorporated into epidemiological mod-
els. Alternatively, researchers could incorporate both spatial pop-
ulation density and social network metrics at the individual level 
to identify which best describes disease burden, informing how 
density and interaction frequency compare (e.g. Albery, Newman, 
et al., 2020). Unfortunately, as yet most investigations into density 
dependence are conducted post hoc, and there is no framework 
for a priori prediction of density dynamics in novel host–pathogen 
systems. This fact may hamstring efforts to develop epidemio-
logical models and interventions, particularly in the case of novel 
pathogen emergence, and increasing use of spatial-social ap-
proaches could address this gap.

5  | COLLEC TING SPATIAL BEHAVIOUR 
WITH SOCIAL DATA

If spatial-social analysis is to be carried out, researchers must first 
collect both data types. Three main study design options can in-
corporate both spatial and social data collection (Figure 2, Section 
1): (a) collect both spatial and social data separately, and encode 
them as different networks; (b) collect only spatial data, using spa-
tiotemporal parameters to estimate contact events; or (c) collect 
only spatial data, using these to approximate social contacts with-
out further parameterising—for example, where spatial proximity 
is expected to directly represent social proximity. Although the 
latter is occasionally the only available option for quantifying so-
cial behaviour in a given system, we discourage this method for 
the reasons outlined above.
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5.1 | What spatial measures are available?

Data collection methods for social networks can take many forms, 
and have been well-reviewed elsewhere (Craft, 2015; Krause 
et al., 2015; White et al., 2017). Many such methods do not nec-
essarily involve an explicit spatial component, yet they can often 
be extended to do so with little difficulty. In Box 1, we provide a 
non-exhaustive list of methods that can be used to collect both 
spatial and social behaviours simultaneously. Once data have been 
collected, there are several possible options for encoding spatial 
behaviour for use in network analyses (Figure 2, Section 2). It is 
important to consider whether a given spatial measure represents 
location effects (i.e. where an individual is on a variable landscape) 
or space sharing effects (i.e. the similarity or proportional overlap 
of two individuals' spatial environments; Albery, Morris, et al., 2020; 
Noonan et al., 2020; Pullan et al., 2012). The two may correlate—for 
example, individuals living closer together will share more of their 
home ranges—but these different types of spatial behaviour can 
operate differently, potentially offering different insights, and may 
have additive benefits for inference when considered simultane-
ously (Albery, Morris, et al., 2020; Noonan et al., 2020). Although 
many network analyses consider interactions as taking place in a 
conceptual space, a recent analytical approach was developed to 
identify the locations of the interactions themselves using telemetry 
data (Noonan et al., 2020). The relative advantages of the spatial 
measures used may depend on the system itself; for example, home 
range overlap will be uninformative for parasitism when species are 
territorial or at such low density that their home ranges rarely over-
lap. Pairwise distances and home range overlap matrices can be con-
ceptualised as a spatial network, if this helps with statistical analysis 
(Figure 2, Section 2; see Analysis section; Mourier et al., 2019).

5.2 | Pairing and delineating spatial and 
social behaviour

To carry out spatial-social analysis, researchers will need to dis-
tinguish social behaviours from spatial activity/occurrence either 
methodologically or statistically (Figure 2; Box 1). Methodologically 
distinguishing the two involves either combining two data collection 
methods, each designed to pick up different behaviours, or using 
multiple types of observations collected by researchers (Figure 2, 
option A). For example, GPS can provide good wide-resolution 
spatial data while proximity loggers are used simultaneously to 
build networks of close-range interactions among individuals (Ossi 
et al., 2016). Alternatively, researchers conducting behavioural cen-
suses can collect social data by identifying associating or interacting 
individuals, while also recording spatial locations. The associations/
interactions produce a social association network, while the point lo-
cations or derived home range estimates provide spatial information.

Distinguishing spatial and social behaviours statistically (post-
data collection) involves parameterising high-resolution (Lagrangian) 
behavioural data (Figure 2, option B). For example, GPS-tracking 

wide-ranging territorial species such as cheetahs Acinonyx jubatus 
provides movement data from which contact events can be rea-
sonably inferred purely because individuals rarely come into close 
proximity of each other (Broekhuis et al., 2019). Meanwhile, the 
home ranges of the individuals can be independently derived from 
GPS patterns, and controlled for separately (Seidel et al., 2018). 
Alternatively, study organisms such as ants can be recorded to track 
the movements of each individual, with contact events identified 
within this spatial behaviour (e.g. Stroeymeyt et al., 2018). Both 
of these methods involve selecting defensible criteria for contact 
events, based on stereotyped behaviours, approach patterns/trajec-
tories (Schlägel et al., 2019) or spatiotemporal proximity (Robitaille 
et al., 2019). Sophisticated algorithms such as Gaussian mixture mod-
els can be used to infer grouping events (Firth et al., 2017; Psorakis 
et al., 2015) or interactions (Jacoby et al., 2016), avoiding the ne-
cessity of defining arbitrary criteria. Encouragingly, even complex, 
asymmetrical interactions can be identified using only parameter-
ised movement patterns (Jacoby et al., 2016; Schlägel et al., 2019), 
potentially helping disease ecology researchers to infer specific con-
tact events contributing to transmission.

Many studies have examined spatial-social behaviours and their 
covariance without necessarily tying them to disease ecology; this 
includes study systems such as great tits (Firth & Sheldon, 2016); elk 
(O'Brien et al., 2018); sharks (Mourier et al., 2019); and many more. 
Because of the longstanding interest in their simultaneous analysis, 
several helpful frameworks have been developed; we describe some 
in Box 2.

6  | SPATIAL-SOCIAL ANALYSIS METHODS 
IN DISE A SE ECOLOGY

Having measured both spatial and social behaviour, statistical ap-
proaches must incorporate both data types to compare their ef-
fects and/or to ensure they are accounted for when investigating 
disease dynamics. Controlling for space is a long-standing consid-
eration in ecology (Tobler, 1970), so there is no shortage of meth-
ods for dealing with spatial structuring. The challenge, then, is 
incorporating these data into the node-and-edge structure of social 
network data (Manlove et al., 2018; Mourier et al., 2019; Silk, Croft, 
Delahay, Hodgson, Boots, et al., 2017), or vice versa (Andris, 2016; 
Mourier et al., 2019). Modelling approaches should take two main 
forms: investigating the relationship between space and social net-
work structure, and investigating the extent to which space and/or 
sociality explains variation in disease (or vice versa). These analy-
ses may take several formats: network level, dyadic or node level 
(Figure 2, Section 3). The list of network methods we provide is 
by no means exhaustive, but represents an indicative selection of 
methods that can be used for spatial-social analysis (Silk, Croft, 
Delahay, Hodgson, Boots, et al., 2017). For each method, we refer-
ence packages or tutorials that can help to carry out the analyses; 
however, these examples are similarly non-comprehensive, and re-
searchers may seek out and use alternative software in many cases.
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6.1 | Considering spatial confounding with network 
permutations

In network ecology, spatial structuring is commonly controlled for 
by permuting the observed data in a way that maintains the spatial 
activity of individuals but randomises their social behaviour. These 
permutations can either be done at the level of the data stream 
(e.g. randomly swapping individuals' memberships within social 
groups, but only allowing swaps within the same locations; Farine 
et al., 2015) or at the network level (e.g. randomly re-assigning the 
social network positions of individuals observed in the same place 
as one another; Firth & Sheldon, 2016). Following the creation of the 
null networks, any given statistic of interest can then be calculated 
from them, and the distribution of this statistic expected under spa-
tial structuring alone can be generated (Whitehead, 2008). If the 
same statistic in the observed social network is statistically different 
from this value, it demonstrates a significant effect above any spatial 
structuring. This methodology has proven useful for differentiating 
spatial and social processes, notably in great tits, where individu-
als' social associations during winter foraging determine subsequent 
spatial decisions during breeding (Firth & Sheldon, 2016), even more 
so than expected given winter ranges. Such null network models can 
be constructed using, for example, the asnipe package (Farine, 2013). 
In a similar sense, ‘spatially embedded’ network models can be used 
to investigate whether spatial effects can explain social structuring 
(Daraganova et al., 2012), or spatial measures can be used in con-
cert with contact patterns to derive spatially controlled dyadic traits 
(Davis et al., 2015), for example using the residuals of correlations 
between spatial and social measures (Whitehead & James, 2015).

Just as ‘null social networks’ can be created through permuting 
social behaviour, researchers can create null spatial models (Figure 2) 
by permuting individuals' spatial activity within the observed dataset 
while keeping other elements constant. Such methods may aid in 
comparing the emergent social network to the observed data to in-
vestigate whether individuals are actively interacting with (or avoid-
ing) each other, potentially providing insights for disease (Perony 
et al., 2012; Richardson & Gorochowski, 2015; Spiegel et al., 2016; 
Woodroffe et al., 2016).

Permutations can be carried out at any stage of data processing 
to allow specific null hypothesis testing, wherein particular aspects 
of the data are retained while other aspects are randomised. For 
instance, a permutation may swap the observations within the raw 
data, or the edges between the nodes in the derived network, or the 
nodes themselves (Whitehead, 2008). In this way, each test comes 
with its own null hypothesis, and conclusions should be drawn in 
relation to this hypothesis. For instance, previous studies have noted 
that permuting the node-level characteristics may be more suited 
for examining null hypotheses surrounding specific behaviours (Firth 
et al., 2018): permuting the raw data under standard permutations 
often only allows testing of null hypotheses that assume that many 
aspects of sociality are random.

Furthermore, despite the well-understood nature of network 
permutations and their widespread use in network ecology, their 

utility often lies mainly in gauging the evidence for the contribu-
tions of spatial or social behaviour, rather than accurately gaining 
estimates of the contribution of both behaviours to a given (disease) 
phenotype in the form of an effect size. This is crucial, because (as 
discussed above) there are many situations in which quantifying 
spatial effects and directly comparing them with social effects is an 
important component of a study design—for example, where a study 
aims to identify transmission mechanisms, density dependence or 
susceptibility effects (see Section 4). For all such analyses, research-
ers will likely benefit from approaches that can provide interpretable 
effect estimates of some sort for both spatial and social behaviours. 
Similarly, there are specific spatial questions that require alternative 
spatial analyses; for example, researchers may want to quantify the 
two-dimensional landscape of network structure, which requires 
specialised analytical constructs other than standard permutations 
(Albery, Morris, et al., 2020). All approaches we outline below will 
provide one or more such pieces of information, allowing greater 
analytical flexibility, and facilitating a wider range of spatial-social 
questions. However, we also note that each can be combined with 
data permutation tests if this is deemed useful or necessary. Such 
an approach may, for instance, be useful for initial tests of assurance 
in these different kinds of tests (e.g. for examining whether the re-
ported test statistics differ from those generated using randomised 
datasets), for comparing the abilities of different methods or for 
drawing general predictions about the dynamics of particular dis-
eases (and our estimates of them) under different reconfigurations 
of the observed social network (e.g. Firth et al., 2020).

6.2 | Edge-level analyses

Disease analyses commonly investigate how network structure af-
fects pathogen transmission or, reciprocally, how infections alter 
the network's topology (Craft, 2015; Sah, Mann, et al., 2018; White 
et al., 2017). In many cases, multiple spatial and social networks may 
be necessary to provide clarity on the processes at work—for exam-
ple, does infection alter the frequency of contact events directly, or 
does it alter individuals' movements in space, with knock-on effects 
on the contact network?

6.2.1 | Dyadic models

Social, spatial and disease data commonly comprise pairwise traits 
between individuals (e.g. distance matrices or pathogen sharing; 
see Figure 2, Section 2) many of which resist being coded as node-
level traits. Analyses that investigate relationships among these 
data are problematic because similarity matrices are fraught with 
non- independence—most notably, each row/column represents a 
replicated individual. Not correcting for this non-independence will 
inflate the significance of the effects detected, potentially biasing 
inference. There are a number of specialised ways to deal with non- 
independence when correlating dyadic data. For example, Mantel 
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tests and Multiple Regression Quadratic Assignment Procedures 
(MRQAP) produce conservative correlation coefficient estimates and 
p-values through matrix permutations (e.g. VanderWaal et al., 2014), 
and can be carried out using the asnipe package (Farine, 2013). 
Generalised Dissimilarity Models (GDMs) are designed specifically 
to analyse dyadic data while accounting for non-independence and 
nonlinearities in the data, for example when quantifying the relative 
importance of spatial and social proximity in driving viral transmis-
sion in lions (Fountain-Jones et al., 2017). The r package gdm will 
implement them (Manion et al., 2018). Finally, multi-membership 
random effects can be employed to accurately quantify the impor-
tance of node-level traits relative to pairwise interactions (Rushmore 
et al., 2013), and can be carried out using the packages mcmcglmm 
(Hadfield, 2010) and mgcv (Wood, 2011).

6.2.2 | ERGMs and Latent Space models

Representing a more complex variation on the theme of dyadic anal-
yses, Latent Space Models (LSMs) and Exponential Random Graph 
Models (ERGMs) are versatile tools that model edge-level traits as 
response variables, incorporating both edge- and node-level traits 
as explanatory variables (Sewell & Chen, 2015; Silk, Croft, Delahay, 
Hodgson, Weber, et al., 2017; see Silk & Fisher, 2017 for a guide). 
These variables could include both dyadic spatial/social proximity 
metrics and individual parasitism, allowing testing of spatial/social 
components of transmission. Both classes of models can be concep-
tualised as network-specific adaptations of GLMs, but they differ 
in the ways they model network structure, and in the process of 
model fitting (Silk, Croft, Delahay, Hodgson, Weber, et al., 2017; Silk 
& Fisher, 2017). Importantly, ERGMs may be poorly suited to asso-
ciation-based networks unless sampling biases are absent or well-
accounted for (Silk, Croft, Delahay, Hodgson, Weber, et al., 2017; 
Silk & Fisher, 2017). LSMs and ERGMs can be constructed using 
‘latentnet’ (Shortreed et al., 2006) and ‘ergm’ (Hunter et al., 2008) 
respectively.

6.3 | Node-level analyses

Network analyses may use node-level traits derived from the social 
network as response or explanatory variables in statistical models. 
Below, we outline some ways to control for spatial autocorrelation 
in network analyses of disease. These models can investigate spatial 
structuring of social network-derived traits, or may estimate spatial 
processes alongside sociality-disease correlations.

6.3.1 | Spatial autocorrelation variance components

Hierarchical statistical models (i.e. GLMMs) can control for spatial au-
tocorrelation with variance components (random effects), using indi-
viduals' point locations to estimate and control for spatial covariance. 

The analytical workflow for spatial autocorrelation models involves 
adding the autocorrelation term and comparing it to the base model 
to investigate whether it changes model fit, accounts for substantial 
variance and/or alters fixed effect estimates. In so doing, the spatial 
effect will account for spatial variation in social behaviour whether so-
ciality is a response or explanatory variable, presenting a good hold-all 
for spatial-social disease analyses. Autocorrelation functions include 
row/column effects (Stopher et al., 2012), wherein individual X and 
Y coordinates (e.g. latitude/longitude) are fitted as discretised integer 
values connected by autoregressive processes. Such formulations can 
be computationally intensive, but modern methods such as the sto-
chastic partial differentiation equation (SPDE) in the integrated nested 
Laplace approximation (INLA) approach are fast, flexible and increas-
ing in popularity (Lindgren et al., 2011; see https://ourco dingc lub.
github.io/2018/12/04/inla.html for a tutorial). Similar flexible spatial 
effects can be fitted in Generalised Additive (Mixed) Models (GAMMs), 
by fitting a tensor smoothing function to individuals' continuous X and 
Y coordinates. See https://noamr oss.github.io/gams-in-r-cours e/ for 
a tutorial. Available r packages include mgcv (Wood, 2011) and inla 
(Lindgren & Rue, 2015).

6.3.2 | Fitting dyadic associations in node-level  
analyses

Dyadic variance components offer a useful alternative to point 
location-based autocorrelation functions, particularly because they 
allow easy mixing of node-level and dyadic traits in familiar statis-
tical models. Quantitative genetic analyses commonly fit a square 
matrix of genetic relatedness in the variance component of an  
‘animal model’ to estimate genetic heritability in the response vari-
able (Kruuk, 2004). Because these models allow the fitting of multiple 
such matrices, the models have been supplemented with home range 
overlap matrices (Albery, Morris, et al., 2020; Stopher et al., 2012). 
This approach allows extrication of environmental and genetic 
sources of variation, and can be extended to use social association 
matrices (Frere et al., 2010; Thomson et al., 2018) to differentiate 
spatial and social contributions to a given phenotype. For example, 
do individuals that associate more often have more similar pathogen 
intensities? Does this result hold when space sharing is accounted 
for (Webber & Vander Wal, 2018)? These models can be carried out 
in linear modelling packages including mcmcglmm (Hadfield, 2010), 
asreml (Gilmour et al., 2009) and inla (Holand et al., 2013).

6.4 | Considering analytical time-scales

The selection of an appropriate time-scale is often a necessity of 
spatial-social analyses, and many available frameworks for spatial-
social analysis struggle with incorporating temporal dependence. 
The choice of analytical time-scale can have dramatic effects on 
a study's conclusions—for example, Springer et al. (2017) simu-
lated environmental and direct transmission of gastrointestinal 

https://ourcodingclub.github.io/2018/12/04/inla.html
https://ourcodingclub.github.io/2018/12/04/inla.html
https://noamross.github.io/gams-in-r-course/
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parasites in a lemur population, finding that dynamic networks 
resulted in larger outbreaks than static equivalents. The options 
for spatial time-scale are numerous: a study could use nest or 
burrow locations to study distributions of vector-borne parasites 
(Wood et al., 2007) or to investigate whether distance and infec-
tion correlate (Bull et al., 2012), or researchers could link chronic 
parasite infections with an individual's average location over a 
predetermined time-scale—for example, the previous year (Albery 
et al., 2019). Landscape structure and climatic conditions can in-
teract with time-dependent habitat selection behaviours, creating 
spatiotemporal coincidence of individuals and thereby encour-
aging social associations. Within each study system, researchers 
need to establish which time periods should be used to summarise 
an individual's spatial movements and social interactions, and how 
these behaviours apply to pathogens of varying infectious periods 
and development times.

Crucially, associations through spatial behaviour can transcend 
time; that is, individuals can have meaningfully overlapping home 
ranges even if they were never alive at the same time (Albery, 
Morris, et al., 2020; Jacoby & Freeman, 2016). In contrast, social 
contact requires spatiotemporal coincidence (Manlove et al., 2018; 
Whitehead, 2008). Spatial behaviours' time independence could 
be a positive or a negative, depending on the question to hand, 
and researchers must consider the time-scale of the pathogen. For 
example, space use combined with a temporal delay may be the 
best way to describe the transmission of certain parasites, but not 
others (Gilbertson et al., 2020; Manlove et al., 2018; Richardson & 
Gorochowski, 2015). Furthermore, if local environmental variation is 
stable over long time periods and influences disease risk, spatial as-
sociations may predict disease similarity even in the absence of any 
possible social contacts (i.e. across non-temporally-overlapping gen-
erations). This knowledge could inform which behaviours could be 
important when modelling transmission dynamics—and, conversely, 
comparing the importance of (temporally lagged) spatial and social 
behaviours could illuminate the transmission modes or epidemiolog-
ical dynamics of a given pathogen (e.g. Albery, Newman, et al., 2020; 
Springer et al., 2017; see Section 4.3).

The repeatability of behaviour (sometimes conceptualised as 
‘personality’) is an important, rapidly developing area of research 
(Dingemanse & Dochtermann, 2013; Moirón et al., 2019) which 
is also often considered for movement behaviours (Jacoby & 
Freeman, 2016; Webber et al., 2020; Webber & Vander Wal, 2018) 
or social behaviours (Firth et al., 2017). If behaviour is highly re-
peatable across time, for example, where individuals inhabit simi-
lar home ranges from year to year (Stopher et al., 2012), time-scale 
problems may be mostly avoidable. This will also depend on the 
pathogen of interest: environmental parasites may have more 
constant spatial hotspots driven by consistent climatic factors, so 
that lifetime home ranges capture substantial variation in parasit-
ism; meanwhile, directly transmitted parasites may exhibit waves 
of transmission across the population, such that spatial hotspots 
are more ephemeral and a restricted analytical time-scale is vital. 
Fortunately, many of the analytical frameworks we describe are 

able to incorporate temporal structures; for example, INLA can 
fit fluctuating spatiotemporal fields across years and seasons 
(Albery et al., 2019), and temporal ERGMs (tERGMs) can handle 
changing network structures through time (Silk, Croft, Delahay, 
Hodgson, Weber, et al., 2017). Thus, even the enduring problem of 
time-scale selection is solvable when interactions between envi-
ronment, movement, sociality and parasitism are understood and 
analysed properly.

7  | SYNTHESIS AND FUTURE DIREC TIONS

We have so far provided a guide to carrying out spatial-social net-
work analysis in disease ecology, from conception through analysis 
works. In this section, we discuss ideal empirical systems for ad-
dressing spatial-social questions, and we detail potential benefits 
emerging from the unification of spatial and social analysis.

7.1 | Model systems

Meta-analysis is a promising option for large-scale investigation 
of spatial-social influences in disease ecology. The number of 
published social network analyses has increased exponentially in 
recent years (Webber & Vander Wal, 2019), and repositories of 
network data are becoming available as a result (Sah et al., 2019). 
These resources can help to compensate for the lack of cross-
system synthesis in this field so far. By analysing contact data 
alongside spatial behaviour across the published literature, we 
can ask broadly informative questions such as: how many social 
network analyses include spatial data? How often are space and 
sociality highly correlated? How might this impact studies' find-
ings? Such analyses may identify general indicators of when and 
where to be concerned about space for social network analyses 
(and even for disease ecology studies in general), as well as po-
tentially testing the criteria laid out in this review. Furthermore, 
even if pathogen data are not available for the large majority of 
spatial-social network datasets, empirically parameterised simula-
tions of disease spread within a meta-analytical framework (e.g. 
Sah, Mann, et al., 2018; Sah, Otterstatter, et al., 2018) could be a 
useful tool for gaining a general understanding of how spatial and 
social drivers of disease can be untangled, and which kinds of sys-
tems and network structures best allow this separation.

Many empirical systems lend themselves to spatial-social anal-
ysis. Fundamentally, any system with extricable/tractable social 
and spatial behaviour could be used for such analyses, and fission–
fusion social systems may be especially well-suited for this reason: 
censuses and GPS records can regularly identify individuals' group 
memberships separately alongside their spatial locations, allow-
ing untangling of spatial-social associations (Box 1). Such systems 
include many well-studied animals, such as dolphins (Lusseau 
et al., 2006), great tits (Firth & Sheldon, 2016) and deer (Stopher 
et al., 2012). Ants likewise represent a promising model system 
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for this reason: using motion-tracking cameras, spatial behaviour 
can be tracked and then social contacts extricated (Modlmeier 
et al., 2019; Stroeymeyt et al., 2018); for example, trophallaxis or 
physical touch events can be used to create a contact network, 
while space use distributions or movement trajectories are used 
to characterise their spatial behaviour. Although the two will 
correlate, there is likely to be a considerable testable variation: 
that is, of the ants that overlap in space with one another, only 
a subset of dyads will give or receive trophallaxis to each other 
(Modlmeier et al., 2019). Ants' social networks respond predict-
ably to spatial changes (Modlmeier et al., 2019) and pathogen pres-
ence (Stroeymeyt et al., 2018), with group-level trends emerging 
from predictable individual-level behaviours, lending them well to 
high-resolution movement models.

Knowledge of a wide range of different pathogens is a further 
advantage for a potential study system, particularly because this 
may allow testing of the spatial-social continuum that we outlined in 
the pathogen transmission section above. Rodents are some of the 
best-studied model systems for disease ecology, yet because ro-
dents are generally too small for battery-powered high-resolution 
GPS tracking, the tools available for studying their spatial behaviour 
at high resolution in the wild are limited. To fill this gap, the develop-
ment of lightweight Bluetooth technology has facilitated the use of 
highly sensitive proximity loggers in wild Mastomys mice (Berkvens 
et al., 2019). Using environmentally placed loggers with wide ranges 
and extended battery lives, it is possible to collect regular spatial 
locations alongside social contact data, providing an exciting model 
system with which to investigate space and sociality simultaneously 
(Berkvens et al., 2019). This methodology could be combined with 
the considerable literature on trapping-based contact networks in 
field voles (Davis et al., 2015; Farine, 2019) and other rodents (e.g. 
Grear et al., 2009). Notably, sleepy lizards T. rugosa have recently 
been proposed as an ideal system for the integration of social and 
spatial analyses, particularly focussing on ectoparasite transmis-
sion, and with many exciting future opportunities for joint spa-
tial-social analyses (Sih et al., 2018). As such, the list of potential 
systems is phylogenetically diverse and extremely promising, with 
many opportunities for further specialisation under this umbrella.

7.2 | Connecting environmental, animal and human 
health with spatial-social analyses

Apart from strengthening inference and improving model accu-
racy, the potential practical benefits of unified spatial-social anal-
ysis for disease ecology are numerous. Integration will improve 
our ability to investigate transmission mechanisms and density 
dependence, while conveying operational benefits (Section 4). 
Furthermore, better empirical understanding will inform the rel-
evant spatiotemporal scales of transmission dynamics, providing 
parameters for scalable models of spatial movement that implicitly 
or explicitly account for social contact-driven transmission events 
within them (White et al., 2018). Building on rapidly developing 

interest in disease-behaviour-network feedbacks (Section 4.1), 
spatial-social analyses could integrate existing models of spatial-
social feedback (e.g. Firth & Sheldon, 2016) with those that iden-
tify reciprocal changes in network topology in response to disease 
transmission (e.g. Stroeymeyt et al., 2018).

All such endeavours will help to predict how altered behaviour 
will affect disease transmission (and vice versa) in the wake of large-
scale community perturbations. This includes short-term events (e.g. 
zoonotic outbreaks or catastrophic events), long-term trends (e.g. 
climate change-induced alterations to global transport systems) or 
behavioural animal health interventions (e.g. translocations), all of 
which will alter contact patterns separately from spatial movements. 
For example, individual variability in raccoon ranging behaviour 
can reduce the effectiveness of rabies vaccination interventions 
(McClure et al., 2020).

Understanding how landscape structure alters raccoons' spa-
tial behaviour, and therefore disease spread, will help to anticipate 
geographic variation in intervention success. As another example, 
it is well-established that culling British badgers M. meles is an in-
effective method of control for bovine tuberculosis M. bovis. The 
culling-associated disruption of local population structure pro-
vokes badgers to disperse, moving further than they otherwise 
would and making more social contacts in the process (Carter 
et al., 2007; Ham et al., 2019; Tuyttens et al., 2000). As such, this 
perturbation of the social network induces a spatial movement, 
which is expected to result in a subsequent rearrangement of 
the social contact network. These changes in network structure 
may facilitate M. bovis spread across the countryside, directly 
contravening the intended control efforts by infecting cattle in 
surrounding areas (Donnelly et al., 2007). This example is hard to 
conceptualise without considering the social and spatial networks 
in tandem, as well as considering the landscape itself. Under rapid 
ongoing global change, a proper understanding of the links be-
tween the environment, animal movement and social behaviour 
will be crucial for understanding how disruptions and natural di-
sasters such as fires, floods and hurricanes will impact wildlife dis-
ease (Silk et al., 2019). Studies have already connected ongoing 
ecological tragedies such as fire with animal movement and one 
health consequence (Bonilla-Aldana et al., 2019), and spatial-social 
analysis is set to be an invaluable tool for anticipating and com-
batting their effects. Popularising these methods will increase the 
breadth, flexibility and reliability of network analyses of disease 
ecology, offering new and exciting insights that may ultimately 
bolster the strength of our interventions.
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